#GVariantDict is a mutable interface to #GVariant dictionaries.
It can be used for doing a sequence of dictionary lookups in an
efficient way on an existing #GVariant dictionary or it can be used
to construct new dictionaries with a hashtable-like interface. It
can also be used for taking existing dictionaries and modifying them
in order to create new ones.
#GVariantDict can only be used with G_VARIANT_TYPE_VARDICT
dictionaries.
glib.variant_dict.VariantDict.end is used to convert the #GVariantDict back into a
dictionary-type #GVariant. When used with stack-allocated instances,
this also implicitly frees all associated memory, but for
heap-allocated instances, you must still call glib.variant_dict.VariantDict.unref
afterwards.
You will typically want to use a heap-allocated #GVariantDict when
you expose it as part of an API. For most other uses, the
stack-allocated form will be more convenient.
Consider the following two examples that do the same thing in each
style: take an existing dictionary and look up the "count" uint32
key, adding 1 to it if it is found, or returning an error if the
key is not found. Each returns the new dictionary as a floating
#GVariant.
#GVariantDict is a mutable interface to #GVariant dictionaries.
It can be used for doing a sequence of dictionary lookups in an efficient way on an existing #GVariant dictionary or it can be used to construct new dictionaries with a hashtable-like interface. It can also be used for taking existing dictionaries and modifying them in order to create new ones.
#GVariantDict can only be used with G_VARIANT_TYPE_VARDICT dictionaries.
It is possible to use #GVariantDict allocated on the stack or on the heap. When using a stack-allocated #GVariantDict, you begin with a call to glib.variant_dict.VariantDict.init_ and free the resources with a call to glib.variant_dict.VariantDict.clear.
Heap-allocated #GVariantDict follows normal refcounting rules: you allocate it with glib.variant_dict.VariantDict.new_ and use glib.variant_dict.VariantDict.ref_ and glib.variant_dict.VariantDict.unref.
glib.variant_dict.VariantDict.end is used to convert the #GVariantDict back into a dictionary-type #GVariant. When used with stack-allocated instances, this also implicitly frees all associated memory, but for heap-allocated instances, you must still call glib.variant_dict.VariantDict.unref afterwards.
You will typically want to use a heap-allocated #GVariantDict when you expose it as part of an API. For most other uses, the stack-allocated form will be more convenient.
Consider the following two examples that do the same thing in each style: take an existing dictionary and look up the "count" uint32 key, adding 1 to it if it is found, or returning an error if the key is not found. Each returns the new dictionary as a floating #GVariant.
Using a stack-allocated GVariantDict
GVariant * add_to_count (GVariant *orig, GError **error) { GVariantDict dict; guint32 count; g_variant_dict_init (&dict, orig); if (!g_variant_dict_lookup (&dict, "count", "u", &count)) { g_set_error (...); g_variant_dict_clear (&dict); return NULL; } g_variant_dict_insert (&dict, "count", "u", count + 1); return g_variant_dict_end (&dict); }Using heap-allocated GVariantDict
GVariant * add_to_count (GVariant *orig, GError **error) { GVariantDict *dict; GVariant *result; guint32 count; dict = g_variant_dict_new (orig); if (g_variant_dict_lookup (dict, "count", "u", &count)) { g_variant_dict_insert (dict, "count", "u", count + 1); result = g_variant_dict_end (dict); } else { g_set_error (...); result = NULL; } g_variant_dict_unref (dict); return result; }