ApplicationCommandLine

gio.application_command_line.ApplicationCommandLine represents a command-line invocation of an application.

It is created by gio.application.Application and emitted in the signal@Gio.Application::command-line signal and virtual function.

The class contains the list of arguments that the program was invoked with. It is also possible to query if the commandline invocation was local (ie: the current process is running in direct response to the invocation) or remote (ie: some other process forwarded the commandline to this process).

The gio.application_command_line.ApplicationCommandLine object can provide the @argc and @argv parameters for use with the glib.option_context.OptionContext command-line parsing API, with the gio.application_command_line.ApplicationCommandLine.getArguments function. See [gapplication-example-cmdline3.c][gapplication-example-cmdline3] for an example.

The exit status of the originally-invoked process may be set and messages can be printed to stdout or stderr of that process.

For remote invocation, the originally-invoked process exits when gio.application_command_line.ApplicationCommandLine.done method is called. This method is also automatically called when the object is disposed.

The main use for gio.application_command_line.ApplicationCommandLine (and the signal@Gio.Application::command-line signal) is 'Emacs server' like use cases: You can set the EDITOR environment variable to have e.g. git use your favourite editor to edit commit messages, and if you already have an instance of the editor running, the editing will happen in the running instance, instead of opening a new one. An important aspect of this use case is that the process that gets started by git does not return until the editing is done.

Normally, the commandline is completely handled in the signal@Gio.Application::command-line handler. The launching instance exits once the signal handler in the primary instance has returned, and the return value of the signal handler becomes the exit status of the launching instance.

static int
command_line (GApplication            *application,
              GApplicationCommandLine *cmdline)
{
  gchar **argv;
  gint argc;
  gint i;

  argv = g_application_command_line_get_arguments (cmdline, &argc);

  g_application_command_line_print (cmdline,
                                    "This text is written back\n"
                                    "to stdout of the caller\n");

  for (i = 0; i < argc; i++)
    g_print ("argument %d: %s\n", i, argv[i]);

  g_strfreev (argv);

  return 0;
}

The complete example can be found here: gapplication-example-cmdline.c

In more complicated cases, the handling of the commandline can be split between the launcher and the primary instance.

static gboolean
 test_local_cmdline (GApplication   *application,
                     gchar        ***arguments,
                     gint           *exit_status)
{
  gint i, j;
  gchar **argv;

  argv = *arguments;

  if (argv[0] == NULL)
    {
      *exit_status = 0;
      return FALSE;
    }

  i = 1;
  while (argv[i])
    {
      if (g_str_has_prefix (argv[i], "--local-"))
        {
          g_print ("handling argument %s locally\n", argv[i]);
          g_free (argv[i]);
          for (j = i; argv[j]; j++)
            argv[j] = argv[j + 1];
        }
      else
        {
          g_print ("not handling argument %s locally\n", argv[i]);
          i++;
        }
    }

  *exit_status = 0;

  return FALSE;
}

static void
test_application_class_init (TestApplicationClass *class)
{
  G_APPLICATION_CLASS (class)->local_command_line = test_local_cmdline;

  ...
}

In this example of split commandline handling, options that start with --local- are handled locally, all other options are passed to the signal@Gio.Application::command-line handler which runs in the primary instance.

The complete example can be found here: gapplication-example-cmdline2.c

If handling the commandline requires a lot of work, it may be better to defer it.

static gboolean
my_cmdline_handler (gpointer data)
{
  GApplicationCommandLine *cmdline = data;

  // do the heavy lifting in an idle

  g_application_command_line_set_exit_status (cmdline, 0);
  g_object_unref (cmdline); // this releases the application

  return G_SOURCE_REMOVE;
}

static int
command_line (GApplication            *application,
              GApplicationCommandLine *cmdline)
{
  // keep the application running until we are done with this commandline
  g_application_hold (application);

  g_object_set_data_full (G_OBJECT (cmdline),
                          "application", application,
                          (GDestroyNotify)g_application_release);

  g_object_ref (cmdline);
  g_idle_add (my_cmdline_handler, cmdline);

  return 0;
}

In this example the commandline is not completely handled before the signal@Gio.Application::command-line handler returns. Instead, we keep a reference to the gio.application_command_line.ApplicationCommandLine object and handle it later (in this example, in an idle). Note that it is necessary to hold the application until you are done with the commandline.

The complete example can be found here: gapplication-example-cmdline3.c

Members

Functions

createFileForArg
gio.file.File createFileForArg(string arg)

Creates a #GFile corresponding to a filename that was given as part of the invocation of cmdline.

done
void done()

Signals that command line processing is completed.

getArguments
string[] getArguments()

Gets the list of arguments that was passed on the command line.

getCwd
string getCwd()

Gets the working directory of the command line invocation. The string may contain non-utf8 data.

getEnviron
string[] getEnviron()

Gets the contents of the 'environ' variable of the command line invocation, as would be returned by glib.global.getEnviron, ie as a null-terminated list of strings in the form 'NAME=VALUE'. The strings may contain non-utf8 data.

getExitStatus
int getExitStatus()

Gets the exit status of cmdline. See gio.application_command_line.ApplicationCommandLine.setExitStatus for more information.

getIsRemote
bool getIsRemote()

Determines if cmdline represents a remote invocation.

getOptionsDict
glib.variant_dict.VariantDict getOptionsDict()

Gets the options that were passed to g_application_command_line().

getPlatformData
glib.variant.VariantG getPlatformData()

Gets the platform data associated with the invocation of cmdline.

getStdin
gio.input_stream.InputStream getStdin()

Gets the stdin of the invoking process.

getenv
string getenv(string name)

Gets the value of a particular environment variable of the command line invocation, as would be returned by glib.global.getenv. The strings may contain non-utf8 data.

printLiteral
void printLiteral(string message)

Prints a message using the stdout print handler in the invoking process.

printerrLiteral
void printerrLiteral(string message)

Prints a message using the stderr print handler in the invoking process.

setExitStatus
void setExitStatus(int exitStatus)

Sets the exit status that will be used when the invoking process exits.

Inherited Members

From ObjectG

setGObject
void setGObject(void* cObj, Flag!"Take" take)

Set the GObject of a D ObjectG wrapper.

cPtr
void* cPtr(Flag!"Dup" dup)

Get a pointer to the underlying C object.

ref_
void* ref_(void* gObj)

Calls g_object_ref() on a GObject.

unref
unref(void* gObj)

Calls g_object_unref() on a GObject.

getType
GType getType()

Get the GType of an object.

gType
GType gType [@property getter]

GObject GType property.

self
ObjectG self()

Convenience method to return this cast to a type. For use in D with statements.

getDObject
T getDObject(void* cptr, Flag!"Take" take)

Template to get the D object from a C GObject and cast it to the given D object type.

connectSignalClosure
ulong connectSignalClosure(string signalDetail, DClosure closure, Flag!"After" after)

Connect a D closure to an object signal.

setProperty
void setProperty(string propertyName, T val)

Template for setting a GObject property.

getProperty
T getProperty(string propertyName)

Template for getting a GObject property.

compatControl
size_t compatControl(size_t what, void* data)
bindProperty
gobject.binding.Binding bindProperty(string sourceProperty, gobject.object.ObjectG target, string targetProperty, gobject.types.BindingFlags flags)

Creates a binding between source_property on source and target_property on target.

bindPropertyFull
gobject.binding.Binding bindPropertyFull(string sourceProperty, gobject.object.ObjectG target, string targetProperty, gobject.types.BindingFlags flags, gobject.closure.Closure transformTo, gobject.closure.Closure transformFrom)

Creates a binding between source_property on source and target_property on target, allowing you to set the transformation functions to be used by the binding.

forceFloating
void forceFloating()

This function is intended for #GObject implementations to re-enforce a floating[floating-ref] object reference. Doing this is seldom required: all #GInitiallyUnowneds are created with a floating reference which usually just needs to be sunken by calling gobject.object.ObjectG.refSink.

freezeNotify
void freezeNotify()

Increases the freeze count on object. If the freeze count is non-zero, the emission of "notify" signals on object is stopped. The signals are queued until the freeze count is decreased to zero. Duplicate notifications are squashed so that at most one #GObject::notify signal is emitted for each property modified while the object is frozen.

getData
void* getData(string key)

Gets a named field from the objects table of associations (see gobject.object.ObjectG.setData).

getProperty
void getProperty(string propertyName, gobject.value.Value value)

Gets a property of an object.

getQdata
void* getQdata(glib.types.Quark quark)

This function gets back user data pointers stored via gobject.object.ObjectG.setQdata.

getv
void getv(string[] names, gobject.value.Value[] values)

Gets n_properties properties for an object. Obtained properties will be set to values. All properties must be valid. Warnings will be emitted and undefined behaviour may result if invalid properties are passed in.

isFloating
bool isFloating()

Checks whether object has a floating[floating-ref] reference.

notify
void notify(string propertyName)

Emits a "notify" signal for the property property_name on object.

notifyByPspec
void notifyByPspec(gobject.param_spec.ParamSpec pspec)

Emits a "notify" signal for the property specified by pspec on object.

refSink
gobject.object.ObjectG refSink()

Increase the reference count of object, and possibly remove the floating[floating-ref] reference, if object has a floating reference.

runDispose
void runDispose()

Releases all references to other objects. This can be used to break reference cycles.

setData
void setData(string key, void* data)

Each object carries around a table of associations from strings to pointers. This function lets you set an association.

setProperty
void setProperty(string propertyName, gobject.value.Value value)

Sets a property on an object.

stealData
void* stealData(string key)

Remove a specified datum from the object's data associations, without invoking the association's destroy handler.

stealQdata
void* stealQdata(glib.types.Quark quark)

This function gets back user data pointers stored via gobject.object.ObjectG.setQdata and removes the data from object without invoking its destroy() function (if any was set). Usually, calling this function is only required to update user data pointers with a destroy notifier, for example:

thawNotify
void thawNotify()

Reverts the effect of a previous call to gobject.object.ObjectG.freezeNotify. The freeze count is decreased on object and when it reaches zero, queued "notify" signals are emitted.

watchClosure
void watchClosure(gobject.closure.Closure closure)

This function essentially limits the life time of the closure to the life time of the object. That is, when the object is finalized, the closure is invalidated by calling gobject.closure.Closure.invalidate on it, in order to prevent invocations of the closure with a finalized (nonexisting) object. Also, gobject.object.ObjectG.ref_ and gobject.object.ObjectG.unref are added as marshal guards to the closure, to ensure that an extra reference count is held on object during invocation of the closure. Usually, this function will be called on closures that use this object as closure data.

connectNotify
ulong connectNotify(string detail, T callback, Flag!"After" after)

Connect to Notify signal.