DisplayManager

A singleton object that offers notification when displays appear or disappear.

You can use gdk.display_manager.DisplayManager.get to obtain the gdk.display_manager.DisplayManager singleton, but that should be rarely necessary. Typically, initializing GTK opens a display that you can work with without ever accessing the gdk.display_manager.DisplayManager.

The GDK library can be built with support for multiple backends. The gdk.display_manager.DisplayManager object determines which backend is used at runtime.

In the rare case that you need to influence which of the backends is being used, you can use func@Gdk.set_allowed_backends. Note that you need to call this function before initializing GTK.

Backend-specific code

When writing backend-specific code that is supposed to work with multiple GDK backends, you have to consider both compile time and runtime. At compile time, use the GDK_WINDOWING_X11, GDK_WINDOWING_WIN32 macros, etc. to find out which backends are present in the GDK library you are building your application against. At runtime, use type-check macros like GDK_IS_X11_DISPLAY() to find out which backend is in use:

#ifdef GDK_WINDOWING_X11
  if (GDK_IS_X11_DISPLAY (display))
    {
      // make X11-specific calls here
    }
  else
#endif
#ifdef GDK_WINDOWING_MACOS
  if (GDK_IS_MACOS_DISPLAY (display))
    {
      // make Quartz-specific calls here
    }
  else
#endif
  g_error ("Unsupported GDK backend");

Members

Functions

connectDisplayOpened
ulong connectDisplayOpened(T callback, Flag!"After" after)

Connect to DisplayOpened signal.

getDefaultDisplay
gdk.display.Display getDefaultDisplay()

Gets the default gdk.display.Display.

listDisplays
gdk.display.Display[] listDisplays()

List all currently open displays.

openDisplay
gdk.display.Display openDisplay(string name)

Opens a display.

setDefaultDisplay
void setDefaultDisplay(gdk.display.Display display)

Sets display as the default display.

Static functions

get
gdk.display_manager.DisplayManager get()

Gets the singleton gdk.display_manager.DisplayManager object.

Inherited Members

From ObjectG

setGObject
void setGObject(void* cObj, Flag!"Take" take)

Set the GObject of a D ObjectG wrapper.

cPtr
void* cPtr(Flag!"Dup" dup)

Get a pointer to the underlying C object.

ref_
void* ref_(void* gObj)

Calls g_object_ref() on a GObject.

unref
unref(void* gObj)

Calls g_object_unref() on a GObject.

getType
GType getType()

Get the GType of an object.

gType
GType gType [@property getter]

GObject GType property.

self
ObjectG self()

Convenience method to return this cast to a type. For use in D with statements.

getDObject
T getDObject(void* cptr, Flag!"Take" take)

Template to get the D object from a C GObject and cast it to the given D object type.

connectSignalClosure
ulong connectSignalClosure(string signalDetail, DClosure closure, Flag!"After" after)

Connect a D closure to an object signal.

setProperty
void setProperty(string propertyName, T val)

Template for setting a GObject property.

getProperty
T getProperty(string propertyName)

Template for getting a GObject property.

compatControl
size_t compatControl(size_t what, void* data)
bindProperty
gobject.binding.Binding bindProperty(string sourceProperty, gobject.object.ObjectG target, string targetProperty, gobject.types.BindingFlags flags)

Creates a binding between source_property on source and target_property on target.

bindPropertyFull
gobject.binding.Binding bindPropertyFull(string sourceProperty, gobject.object.ObjectG target, string targetProperty, gobject.types.BindingFlags flags, gobject.closure.Closure transformTo, gobject.closure.Closure transformFrom)

Creates a binding between source_property on source and target_property on target, allowing you to set the transformation functions to be used by the binding.

forceFloating
void forceFloating()

This function is intended for #GObject implementations to re-enforce a floating[floating-ref] object reference. Doing this is seldom required: all #GInitiallyUnowneds are created with a floating reference which usually just needs to be sunken by calling gobject.object.ObjectG.refSink.

freezeNotify
void freezeNotify()

Increases the freeze count on object. If the freeze count is non-zero, the emission of "notify" signals on object is stopped. The signals are queued until the freeze count is decreased to zero. Duplicate notifications are squashed so that at most one #GObject::notify signal is emitted for each property modified while the object is frozen.

getData
void* getData(string key)

Gets a named field from the objects table of associations (see gobject.object.ObjectG.setData).

getProperty
void getProperty(string propertyName, gobject.value.Value value)

Gets a property of an object.

getQdata
void* getQdata(glib.types.Quark quark)

This function gets back user data pointers stored via gobject.object.ObjectG.setQdata.

getv
void getv(string[] names, gobject.value.Value[] values)

Gets n_properties properties for an object. Obtained properties will be set to values. All properties must be valid. Warnings will be emitted and undefined behaviour may result if invalid properties are passed in.

isFloating
bool isFloating()

Checks whether object has a floating[floating-ref] reference.

notify
void notify(string propertyName)

Emits a "notify" signal for the property property_name on object.

notifyByPspec
void notifyByPspec(gobject.param_spec.ParamSpec pspec)

Emits a "notify" signal for the property specified by pspec on object.

refSink
gobject.object.ObjectG refSink()

Increase the reference count of object, and possibly remove the floating[floating-ref] reference, if object has a floating reference.

runDispose
void runDispose()

Releases all references to other objects. This can be used to break reference cycles.

setData
void setData(string key, void* data)

Each object carries around a table of associations from strings to pointers. This function lets you set an association.

setProperty
void setProperty(string propertyName, gobject.value.Value value)

Sets a property on an object.

stealData
void* stealData(string key)

Remove a specified datum from the object's data associations, without invoking the association's destroy handler.

stealQdata
void* stealQdata(glib.types.Quark quark)

This function gets back user data pointers stored via gobject.object.ObjectG.setQdata and removes the data from object without invoking its destroy() function (if any was set). Usually, calling this function is only required to update user data pointers with a destroy notifier, for example:

thawNotify
void thawNotify()

Reverts the effect of a previous call to gobject.object.ObjectG.freezeNotify. The freeze count is decreased on object and when it reaches zero, queued "notify" signals are emitted.

watchClosure
void watchClosure(gobject.closure.Closure closure)

This function essentially limits the life time of the closure to the life time of the object. That is, when the object is finalized, the closure is invalidated by calling gobject.closure.Closure.invalidate on it, in order to prevent invocations of the closure with a finalized (nonexisting) object. Also, gobject.object.ObjectG.ref_ and gobject.object.ObjectG.unref are added as marshal guards to the closure, to ensure that an extra reference count is held on object during invocation of the closure. Usually, this function will be called on closures that use this object as closure data.

connectNotify
ulong connectNotify(string detail, T callback, Flag!"After" after)

Connect to Notify signal.