RecentManager

gtk.recent_manager.RecentManager manages and looks up recently used files.

Each recently used file is identified by its URI, and has meta-data associated to it, like the names and command lines of the applications that have registered it, the number of time each application has registered the same file, the mime type of the file and whether the file should be displayed only by the applications that have registered it.

The recently used files list is per user.

gtk.recent_manager.RecentManager acts like a database of all the recently used files. You can create new gtk.recent_manager.RecentManager objects, but it is more efficient to use the default manager created by GTK.

Adding a new recently used file is as simple as:

GtkRecentManager *manager;

manager = gtk_recent_manager_get_default ();
gtk_recent_manager_add_item (manager, file_uri);

The gtk.recent_manager.RecentManager will try to gather all the needed information from the file itself through GIO.

Looking up the meta-data associated with a recently used file given its URI requires calling gtk.recent_manager.RecentManager.lookupItem:

GtkRecentManager *manager;
GtkRecentInfo *info;
GError *error = NULL;

manager = gtk_recent_manager_get_default ();
info = gtk_recent_manager_lookup_item (manager, file_uri, &error);
if (error)
  {
    g_warning ("Could not find the file: %s", error->message);
    g_error_free (error);
  }
else
 {
   // Use the info object
   gtk_recent_info_unref (info);
 }

In order to retrieve the list of recently used files, you can use gtk.recent_manager.RecentManager.getItems, which returns a list of gtk.recent_info.RecentInfo.

Note that the maximum age of the recently used files list is controllable through the property@Gtk.Settings:gtk-recent-files-max-age property.

Constructors

this
this()

Creates a new recent manager object.

Members

Functions

addFull
bool addFull(string uri, gtk.recent_data.RecentData recentData)

Adds a new resource, pointed by uri, into the recently used resources list, using the metadata specified inside the gtk.recent_data.RecentData passed in recent_data.

addItem
bool addItem(string uri)

Adds a new resource, pointed by uri, into the recently used resources list.

connectChanged
ulong connectChanged(T callback, Flag!"After" after)

Connect to Changed signal.

getItems
gtk.recent_info.RecentInfo[] getItems()

Gets the list of recently used resources.

hasItem
bool hasItem(string uri)

Checks whether there is a recently used resource registered with uri inside the recent manager.

lookupItem
gtk.recent_info.RecentInfo lookupItem(string uri)

Searches for a URI inside the recently used resources list, and returns a gtk.recent_info.RecentInfo containing information about the resource like its MIME type, or its display name.

moveItem
bool moveItem(string uri, string newUri)

Changes the location of a recently used resource from uri to new_uri.

purgeItems
int purgeItems()

Purges every item from the recently used resources list.

removeItem
bool removeItem(string uri)

Removes a resource pointed by uri from the recently used resources list handled by a recent manager.

Static functions

getDefault
gtk.recent_manager.RecentManager getDefault()

Gets a unique instance of gtk.recent_manager.RecentManager that you can share in your application without caring about memory management.

Inherited Members

From ObjectG

setGObject
void setGObject(void* cObj, Flag!"Take" take)

Set the GObject of a D ObjectG wrapper.

cPtr
void* cPtr(Flag!"Dup" dup)

Get a pointer to the underlying C object.

ref_
void* ref_(void* gObj)

Calls g_object_ref() on a GObject.

unref
unref(void* gObj)

Calls g_object_unref() on a GObject.

getType
GType getType()

Get the GType of an object.

gType
GType gType [@property getter]

GObject GType property.

self
ObjectG self()

Convenience method to return this cast to a type. For use in D with statements.

getDObject
T getDObject(void* cptr, Flag!"Take" take)

Template to get the D object from a C GObject and cast it to the given D object type.

connectSignalClosure
ulong connectSignalClosure(string signalDetail, DClosure closure, Flag!"After" after)

Connect a D closure to an object signal.

setProperty
void setProperty(string propertyName, T val)

Template for setting a GObject property.

getProperty
T getProperty(string propertyName)

Template for getting a GObject property.

compatControl
size_t compatControl(size_t what, void* data)
bindProperty
gobject.binding.Binding bindProperty(string sourceProperty, gobject.object.ObjectG target, string targetProperty, gobject.types.BindingFlags flags)

Creates a binding between source_property on source and target_property on target.

bindPropertyFull
gobject.binding.Binding bindPropertyFull(string sourceProperty, gobject.object.ObjectG target, string targetProperty, gobject.types.BindingFlags flags, gobject.closure.Closure transformTo, gobject.closure.Closure transformFrom)

Creates a binding between source_property on source and target_property on target, allowing you to set the transformation functions to be used by the binding.

forceFloating
void forceFloating()

This function is intended for #GObject implementations to re-enforce a floating[floating-ref] object reference. Doing this is seldom required: all #GInitiallyUnowneds are created with a floating reference which usually just needs to be sunken by calling gobject.object.ObjectG.refSink.

freezeNotify
void freezeNotify()

Increases the freeze count on object. If the freeze count is non-zero, the emission of "notify" signals on object is stopped. The signals are queued until the freeze count is decreased to zero. Duplicate notifications are squashed so that at most one #GObject::notify signal is emitted for each property modified while the object is frozen.

getData
void* getData(string key)

Gets a named field from the objects table of associations (see gobject.object.ObjectG.setData).

getProperty
void getProperty(string propertyName, gobject.value.Value value)

Gets a property of an object.

getQdata
void* getQdata(glib.types.Quark quark)

This function gets back user data pointers stored via gobject.object.ObjectG.setQdata.

getv
void getv(string[] names, gobject.value.Value[] values)

Gets n_properties properties for an object. Obtained properties will be set to values. All properties must be valid. Warnings will be emitted and undefined behaviour may result if invalid properties are passed in.

isFloating
bool isFloating()

Checks whether object has a floating[floating-ref] reference.

notify
void notify(string propertyName)

Emits a "notify" signal for the property property_name on object.

notifyByPspec
void notifyByPspec(gobject.param_spec.ParamSpec pspec)

Emits a "notify" signal for the property specified by pspec on object.

refSink
gobject.object.ObjectG refSink()

Increase the reference count of object, and possibly remove the floating[floating-ref] reference, if object has a floating reference.

runDispose
void runDispose()

Releases all references to other objects. This can be used to break reference cycles.

setData
void setData(string key, void* data)

Each object carries around a table of associations from strings to pointers. This function lets you set an association.

setProperty
void setProperty(string propertyName, gobject.value.Value value)

Sets a property on an object.

stealData
void* stealData(string key)

Remove a specified datum from the object's data associations, without invoking the association's destroy handler.

stealQdata
void* stealQdata(glib.types.Quark quark)

This function gets back user data pointers stored via gobject.object.ObjectG.setQdata and removes the data from object without invoking its destroy() function (if any was set). Usually, calling this function is only required to update user data pointers with a destroy notifier, for example:

thawNotify
void thawNotify()

Reverts the effect of a previous call to gobject.object.ObjectG.freezeNotify. The freeze count is decreased on object and when it reaches zero, queued "notify" signals are emitted.

watchClosure
void watchClosure(gobject.closure.Closure closure)

This function essentially limits the life time of the closure to the life time of the object. That is, when the object is finalized, the closure is invalidated by calling gobject.closure.Closure.invalidate on it, in order to prevent invocations of the closure with a finalized (nonexisting) object. Also, gobject.object.ObjectG.ref_ and gobject.object.ObjectG.unref are added as marshal guards to the closure, to ensure that an extra reference count is held on object during invocation of the closure. Usually, this function will be called on closures that use this object as closure data.

connectNotify
ulong connectNotify(string detail, T callback, Flag!"After" after)

Connect to Notify signal.